Relationship between Rheology and Flowable Concrete Workability

Kamal Henri Khayat

U. de Sherbrooke, Canada

Things you Need to Know about Workability of Concrete - 2009 Fall Convention

First encounter with rheology

Rio.. what.. ?

Rheology affects ease of mixing, pumping, flow, segregation, washout, formwork pressure, surface finish, microstructure development ...

Oh, I see!

Rheology vs. slump and washout

<table>
<thead>
<tr>
<th>Binder</th>
<th>100% cement & 8% silica fume</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/CM</td>
<td>0.37 0.41 0.47 0.47</td>
</tr>
<tr>
<td>CM (kg/m(^3))</td>
<td>450 420 400 540</td>
</tr>
<tr>
<td>Sand / agg.</td>
<td>0.41 0.41 0.41 0.47</td>
</tr>
<tr>
<td>Slump (mm)</td>
<td>220 190 220 270 SCC UWC</td>
</tr>
</tbody>
</table>

Welan gum (% cwt) | 0, 0.05, 0.10, and 0.15

Cell. (mL/100 kg CM) | 600, 900, and 1200

Khayat and Assaad, 2003

Rheology of Underwater Concrete

Washout loss test (CRD C61)

ACI Fall 2009 Convention

Relationship between Rheology and Flowable Concrete Workability
Washout not a function of slump

Effect AWA + HRWRA on g and h

Workability box for washout loss
Relationship between Rheology and Flowable Concrete Workability

- Rheology vs. washout resistance
- Rheology vs. workability of SCC
 - Rheology vs. workability test methods
 - Workability of fiber-reinforced SCC
 - Effect of mix design on rheology of SCC
- Rheology vs. hardening properties
 - Form pressure
 - Interlayer bond of green SCC
 - Top-bar effect

Flow behavior of SCC is complex and must be optimized to secure adequate performance.

- Low resistance to flow (low τ_0)
- High stability (moderate visc.)
- High passing ability (low τ_0 + moderate visc.)

Rheology of matrix must be controlled to avoid particle segregation.

- Low yield value and viscosity
- Lack of static stability after casting

\[\tau_y \geq \frac{2}{3} g (\rho_p - \rho_m) MSA \]

Laboratory & field test methods to assess SCC workability.

T50 vs. h

- Cement content = 385 kg/m³
- Cement content = 500 kg/m³

V-funnel flow vs. h

- Cement content = 385 kg/m³
- Cement content = 500 kg/m³

Khayat et al. 2004
Relationship between Rheology and Flowable Concrete Workability

Kamal H. Khayat
U. de Sherbrooke, Canada

Increase of L-box and U-box flow times with h

- L-box test; $R^2 = 0.65$
- U-box test; $R^2 = 0.74$

Khayat et al. 2004

Correlate workability characteristics to intrinsic rheological properties

- U-box test
- $R^2 = 0.74$

Khayat et al. 2004

Viscosity vs. passing ability

- $N = 24$
- $R^2 = 0.81$

NCHRP 628, 2005

Viscosity vs. static stability

- $\tau_s \geq 2/3\left(\rho_g - \rho_m\right)MSA$

NCHRP 628, 2005

Surface settlement

- $\phi = 670 \pm 20\text{ mm}$

NCHRP 628, 2005

Surface settlement vs. μ_p

NCHRP 628, 2005
Relationship between Rheology and Flowable Concrete Workability

- Rheology vs. washout resistance
- Rheology vs. workability of SCC
 - Rheology vs. workability test methods
 - Workability of fiber-reinforced SCC
 - Effect of mix design on rheology of SCC
- Rheology vs. hardening properties
 - Form pressure
 - Interlayer bond of green SCC
 - Top-bar effect

Variations in lateral pressure envelope

Loss in slump flow is not sufficient to evaluate decay in lateral pressure

Filling capacity of FR-SCC can be related to rheological parameters

Khayat and Roussel, 2000

Khayat and Roussel, 2000

Khayat et al., 2003
Thixotropy: variation of viscosity with time at constant shear rate (reversible)

![Graph showing thixotropy](image)

Testing protocol of thixotropy

![Graph showing testing protocol](image)

A_b vs. lateral pressure measured initially and after 100 and 200 min

![Graph showing A_b vs. lateral pressure](image)

Field validation

H = 5.5 - 6 m
L = 7 m
W = 0.19 m
As = 0.4%

Typical formwork pressure diagram

![Graph showing formwork pressure](image)

Actual pressure is less than hydrostatic!

![Graph showing actual pressure](image)
Relationship between Rheology and Flowable Concrete Workability

- **Structural build-up: Static yield stress at rest**
 \[T_{\text{rest}} = T_{\text{max}}/G \]
 - \(T_{\text{max}} \): Torque at maximum
 - \(G \): Shear modulus
 - \(N = 0.03 \text{ rps} \)

- **Homogeneity of bond strength**
 - \(H = 1.5 \text{ m} \)
 - SCC mixtures:
 - J-Ring: 630 – 640 mm
 - L-box ≥ 0.75
 - Filling capacity ≥ 90%
 - VSI: 0 – 1

- **In-situ compressive strength**
 - \(f'_{c} \): Core/Bottom compressive strength
 - Dist. from bottom (cm):
 - 0
 - 30
 - 60
 - 90
 - 120
 - 150
 - High \(\mu_{p}, A_{b} \)
 - Med. \(\mu_{p}, A_{b} \)
 - Low \(\tau_{0}, \mu_{p}, A_{b} \)

- **Top-bar effect**
 - Dist. from bottom (cm):
 - 0.8
 - 1.0
 - 1.2
 - 1.4
 - 1.6
 - 1.8
 - 2.0
 - \(f'_{c} \): Core/Bottom/In-situ compressive strength
 - \(f'_{c} = f'_{c} \text{ (bottom)} \)
 - \(f'_{c} = f'_{c} \text{ (in-situ)} \)
 - \(U'/U'_{\text{bottom}} \)
 - \(U'/U'_{\text{in-situ}} \)

- **Surface settlement (%)**
 - Blapsed time (hour):
 - 0
 - 2
 - 4
 - 6
 - 8
 - Med. \(\mu_{p}, A_{b} \)
 - Low \(\mu_{p}, A_{b} \)
 - Vibrated HPC

- **K\(_{0}\) = f(H, R, D\(_{\text{min}}\), \tau_{0\text{rest}}, PV_{\tau_{0\text{rest}}}, MSA, WP)**
 - \(H = 2 \text{ m} \)
 - \(R = 2 \text{ ml/hr} \)
 - \(T = 22 \text{ °C} \)
 - \(D_{\text{min}} = 200 \text{ mm} \)
 - MSA = 14 mm
 - WP ≥ 0
 - \(\tau_{0\text{rest}} = T_{\text{max}}/G \)
 - \(PV_{\tau_{0\text{rest}}} \)

- **Lack of proper consolidation**

- **In-situ compressive strength**
 - Core/Bottom compressive strength

- **Top-bar effect**
 - In-situ versus bottom compressive strength
Recommended values to ensure homogeneous properties

<table>
<thead>
<tr>
<th>Static stability</th>
<th>Maximum surface settlement $\leq 0.5%$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Column segregation index (I_{seg}) $\leq 5%$</td>
</tr>
<tr>
<td></td>
<td>Percent static segregation (S) ≤ 15</td>
</tr>
<tr>
<td>Viscosity</td>
<td>Plastic viscosity ≤ 0.073 psi.s (500 Pa.s)</td>
</tr>
<tr>
<td></td>
<td>(Modified Tattersall two-point rheometer with vane device)</td>
</tr>
<tr>
<td>Mechanical properties</td>
<td>Core-to-cylinder compressive strength $\geq 90%$</td>
</tr>
<tr>
<td></td>
<td>(similar curing conditions)</td>
</tr>
<tr>
<td></td>
<td>Bond strength modification factor ≤ 1.4</td>
</tr>
</tbody>
</table>

NCHRP 628, 2009

References